

Geochemical study of the Abaya Geothermal Prospect kibret Beyene E-mail:kiberet_beyene@yahoo.com Geological Survey of Ethiopia p.o.box 31677

Location map of the Abaya geothermal

prospect

Objective of the study

 To gain a better undestanding about the geothermal system of the Abaya geothermal prospect.

Method

 Organizing and processin, both the geochemical and isotopic data generated at different times.

sample locations

Geological map

Figure-10, Geological map of southern Abaya geothermal prospect (GSE,2000)

PHYSIOGRAPHY AND DRAINAIGE

The western part of the geothermal prospect slopes down from an average elevation of about 2000m a.s.l. to 1169 m a.s.l. at the level of Lake Abaya.

The area is a closed drainage system where all rivers and streams draining into Lake Abaya.

REGIONAL GEOLOGICAL SETUP

- It is widely accepted that the Ethiopian Rift is formed in the Quaternary, around 10 Ma.
- The tectonic movements, were episodic and followed by pulses of magmatic extrusion.
- These deep seated magma chambers are serving as heat source for the widespread hydrothermal activity in the region

REVIEW OF PREVIOUS WORKS

- ✤ A reconnaissance geothermal exploration work was done in 1973.
- Subsequent studies were carried out by the gelogical survey of Ethiopia.

Results of the studies

- Identified a number of possible potential geothermal prospects.
- Identified the presence of secondary permeability, which is caused by the Quaternary rhyolitic volcanic complexes movements along the axis of the rift.
- Suggested, the supply of hydrothermal fluid to surface manifestations is maintained by the presence of secondary permeability.

Recent studies (2000)

- ✤ A total of 20 samples:- 14 hot springs, 3 rivers, 1 lake and 1 precipitation were taken.
- From the north west of (NW) Abaya lake, 6 hot springs, 1 river and 1 lake.
- From north east (NE) Abaya lake, 2 hot springs.
- From the Bilate area, 6 hot springs,1 rain (precipitation) and 1-river samples were collected.

Analysis of samples

- All major cations and anions were analyzed by the Central Laboratory of Geological survey of Ethiopia (CLGSE).
- Isotope analysis for δ²H, δ¹⁸O and ³H unit counting were done by the Isotope Hydrology Section, International Atomic Energy Agency (I.A.E.A), Vienna, Austria.

Inter-comparsion of different time data sets

- ✤ UN(1973)*
- Craig(1977)^
- ♦ GSE(2000)&

Inter-comparison of data sets

Cont..inter-comparison sets

Con..inter-comparison.

Summary of Inter-Comparison

- * Conductivity, water temperature, Na, Cl, and δ^2 H gave good correlation with a correlation coefficient (R^2) of grater than 99%.
- ◆ GSE, (2000) values are not well correlated, Mg, HCO_{3.}

Summary of Inter-Comparison

- ◆ SO₄, SiO₂, and pH, are not well correlated. pH correlated worst.
- In most of the elements, the chemical and isotopic composition of the compared samples never showed significant change.

Interpretation of data

- ✤ For Interpretation of data GSE 2000 data is used.
- * Samples are grouped based of their location to the Abaya lake.

Grouping of samples

- The study area is divided into three groups based on the proximity of the hot springs to each other.
- Group I, contains the NW and the NE Abaya lake:- where, Sp-5, Sp-6, Sp-2, Sp-3, Sp-4, Sp-1, Sp-14 and Sp-13 are found.

Group II, contains the Bilate and Dimtu :- where, Sp-11, Sp-12, Sp-9, Sp-10, Sp-7 and Sp-8 are found.

Cl- HCO₃-SO₄ diagram GSE (2000)

Cl- HCO₃-SO₄ diagram

- the Chawokare area (Sp2, Sp3, and Sp5 with 67% to 88% bicarbonate and 10% to 49% chloride.
- The Bilate area (Sp7, Sp9, Sp10, Sp11 and Sp12 with 88% to 90% bicarbonate and 7% to 19% chloride.
- Only Wache (Sp5) and Bilate (Sp9) hot springs have relatively higher chloride percentage, 49% and 19% respectively.

Indication of deep reservoir water

- Sp-5 has the highest chloride (734 ppm) and silica (204 ppm, UN,1973).
- Sp-5 can be taken as an evidence for the presence of a geothermal potential for power development.

Trends in chloride concentration

- From the NW Abaya lake thermal area (734 ppm), Cl decreases to wards the Bilate thermal area (23-56) ppm.
- This suggests that the Bilate area might be located at the margin of the Abaya geothermal system,

ISOTOPE

ISOTOPE

- The only significant Oxygen-shift is indicated by Sp-5 (Wache hot spring), NW spring.
- Springs Sp-13 and Sp9-14 at the NE Abaya lake shows enrichment in both ²H and ¹⁸O along an evaporation line.

Chemical geothermometry

- Two methods were used for the calculation of the deep equilibrium temperatures.
- Method I, by direct application of the concentration of the constituents to selected geothermometers.
- Method II, by using recalculated concentration of the constituents using chloride and apply to the selected geothermometers.

Linear equations used for method II

* Group I. Na= 1.44Cl+337* K = 0.22Cl+15.2* Mg= -0.03Cl+26.0* SiO₂= 0.42Cl+217

••••

••••

- ♦ Group II. Na= 0.50Cl+218
 ♦ K = 0.002Cl+15.8
 ♦ Mg = -.0067Cl+2.7
- * SiO = 0.19Cl + 188

Selected Chemical geothermometrs

TNa-K (°C)	a
TK-M (°C)	b
TSiO2 (oC)	C
TNa-K (oC)	d
TK-Mg (oC)	е
TSiO2 (oC)	f
TNa-K-Ca (oC)	g

Chemical geothermometrs

Table 7: Avearged deep reservoir temperatures for each sample.										
Group I	Method I				Method II					
	T(° C) using recalculated values				T(° C) using analytical values					
	а	С	aver.	dev.	d	f	g	aver.	dev	
Sp-5	238	239	239	1	242	240	nd		1	
Sp-6	182	161		15	180	170	194	181	12	
Sp-2	197	169		20	228	nd	221		5	
Sp-3	196	169		19	nd	149	121		20	
Sp-4	189	164		18	196	164	198	186	19	
Sp-1	162	153		6	269	159	90		78	
Sp-14	201	173		20	nd	196	210		10	
Sp-13	178	159	169	13	168	159	186	171	14	

Chemical geothermometrs

Table 7: Avearged deep reservoir temperatures for each sample.									
Group II.	T(o C) using recalculated values			T(o C) using analytical values					
	a	с	aver.	dev.	f	g	aver	dev.	
Sp-11	224	151	188	52	152	158	155	4	
Sp-12	227	152	190	53	147	144	146	2	
Sp-9	264	160	212	74	161	168	165	5	
Sp-10	226	152	189	52	153	167	160	10	
Sp-7	226	152	189	52	147	139	143	6	
Sp-8	207	149	178	41	154	143	149	8	

Fig 3: Reservoir temperature versus Cl for Group I

Fig 4: Reservoir temperature versus Cl for GroupII

Deep reservoir temperature estimates

- * Group I, in the range of 153 (0 C) and 239 (0 C).
- Group II, in the range of 142 (0 C) and 224 (0 C).
- * The corrected method used for Group I, gave a reasonable estimates
- The chloride method can be used as check.

Fig:4 TRIANGULAR PLOT OF Na-K-Mg

Summary

- Settimated deep equilibrium reservoir temperatures for NW Abaya lake is in the range 153(°C) to 239(°C).
- Estimated deep equilibrium reservoir temperatures for the Bilate thermal areas is in the range 149(⁰C) to 224(⁰C).
- Soth chemical and isotopic data indicated NW Abaya lake thermal area has high-temperature system underneath, followed by the NE Abaya lake and the Bilate thermal areas.

Thank you

